Pengembangan Sistem Penjadwalan Mata Pelajaran Otomatis Menggunakan Algoritma Genetika di Sekolah Menengah Kejuruan (SMK)Darussalam Makassar
Keywords:
Genetic Algorithm, School Timetabling, Scheduling OptimizationAbstract
The effectiveness of the teaching and learning process within an educational institution is significantly determined by the quality of its course scheduling. The timetable generation process at SMK Darussalam Makassar, which still relies on manual methods using Microsoft Excel, faces several fundamental challenges. This process has been identified as time-consuming (inefficient), leading to delays in the dissemination of the schedule to relevant stakeholders. The primary problem that frequently arises is the occurrence of clashes in teacher schedules, thereby directly disrupting the academic process. To address this scheduling optimization problem, this research implements a Genetic Algorithm. This algorithm is a stochastic search technique inspired by the principles of natural selection and genetics to find optimal or near-optimal solutions. Based on the evaluation results, the developed Genetic Algorithm-based scheduling system demonstrates limitations in terms of scalability. The system only succeeded in achieving an optimal schedule for 56 out of a total of 406 class meetings. This performance limitation is attributed to the architectural and computational resource constraints of the developed platform.
Downloads
References
[1] D. Asmarajati, M. F. Asnawi, dan R. D. Akmal, “IMPLEMENTASI ALGORITMA GENETIKA PADA PENJADWALAN SISTEM INFORMASI XYZ TV,” no. 01, 2020.
[2] P. Irfan, R. Hammad, A. S. Anas, Fatimatuzzahra, dan N. Samudra, “Application of the Blowfish Algorithm in securing patient data in the database,” Matrix : Jurnal Manajemen Teknologi dan Informatika, vol. 12, no. 2, hlm. 102–108, Jul 2022, doi: 10.31940/matrix.v12i2.102-108.
[3] M. Irfan, M. R. Lubis, dan Z. M. Nasution, “Penerapan Algoritma Genetika Untuk Penjadwalan Mata Pelajaran di SD Taman Cahya Pematangsiantar,” JOMLAI: Journal of Machine Learning and Artificial Intelligence, vol. 1, no. 2, hlm. 151–158, Jun 2022.
[4] N. I. Kurniati, A. Rahmatulloh, dan D. Rahmawati, “Perbandingan Performa Algoritma Koloni Semut Dengan Algoritma Genetika – Tabu Search Dalam Penjadwalan Kuliah,” Com, Engine, Sys, Sci, vol. 4, no. 1, hlm. 17, Jan 2019, doi: 10.24114/cess.v4i1.11387.
[5] A. Noe’man, T. S. Lestari, dan A. Y. P. Yusuf, “SISTEM PENJADWALAN MATA PELAJARAN PADA SMK XY DENGAN ALGORITMA GENETIKA,” JURNAL MITRA MANAJEMEN, vol. 13, no. 1, Art. no. 1, Jan 2022, doi: 10.35968/jmm.v13i1.835.
[6] D. Oktarina dan A. Hajjah, “Perancangan Sistem Penjadwalan Seminar Proposal dan Sidang Skripsi dengan Metode Algoritma Genetika,” JOISIE, vol. 3, no. 1, hlm. 32, Jul 2019, doi: 10.35145/joisie.v3i1.421.
[7] Y. Elva, “SISTEM PENJADWALAN MATA PELAJARAN MENGGUNAKAN ALGORITMA GENETIKA,” Jurnal Teknologi Informasi, vol. 3, no. 1, Art. no. 1, 2019.
[8] N. Wahyono, A. S. Akbar, dan J. Minardi, “Sistem Penjadwalan Mengajar di SMA NU Al-Ma’ruf Kudus Menggunakan Algoritma Genetika,” Journal of Information System and Computer (JISTER), vol. 2, no. 1, Jul 2022.
[9] P. Puspitasari dan M. A. I. Pakereng, “Implementasi Algoritma Genetika Untuk Penjadwalan Sekolah (Studi Kasus: SMP Negeri 2 Wonosegoro),” vol. 7, 2023.
[10] H. Hermawan, A. Fauzi, Y. Cahyana, dan H. Handayani, “Penerapan Algoritma Genetika Untuk Penjadwalan Mata Pelajaran Di SMK Negeri 1 Kota Tambolaka | Jurnal Pendidikan, Sains Dan Teknologi,” dalam CIASTECH 2020, hlm. 683–690. Diakses: 22 Juli 2025. [Daring]. Tersedia pada: https://jurnal.minartis.com/index.php/jpst/article/view/1314
[11] Y. Sari, M. Alkaff, E. S. Wijaya, S. Soraya, dan D. P. Kartikasari, “Optimasi Penjadwalan Mata Kuliah Menggunakan Metode Algoritma Genetika dengan Teknik Tournament Selection,” JTIIK, vol. 6, no. 1, hlm. 85–92, Jan 2019, doi: 10.25126/jtiik.2019611262.
[12] H. Ardiansyah dan M. B. S. Junianto, “Penerapan Algoritma Genetika untuk Penjadwalan Mata Pelajaran,” mib, vol. 6, no. 1, hlm. 329, Jan 2022, doi: 10.30865/mib.v6i1.3418.
[13] Z. A. Hasibuan, Metodologi Penelitian pada Bidang Ilmu Komputer dan Teknologi Informasi. Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2017.
[14] R. Habibi dan R. Aprilian, Tutorial dan penjelasan aplikasi e-office berbasis web menggunakan metode RAD. Kreatif, 2020.
[15] W. Priatna, J. Warta, dan D. Sulistiyo, “Implementasi Algoritma Genetika untuk Aplikasi Penjadwalan Sistem Kerja Shift,” Techno.Com, vol. 22, no. 1, Art. no. 1, 2023, doi: 10.33633/tc.v22i1.7049.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Qalbi, Faisal , Erfina

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
 
						 
							
